Chapter 2

Mechanics: Kinematics

Description of Motion
 دراسة كل من الإزاحة Displacement و السر عة Velocity و العجلة Acceleration. ونحتّاج هنا إلى اعتماد محاور إسناد لتحديد موضع الجسم المتحرك عند أزمنـــة مختلفــة
 (coordinate ((x, y, z) محددة فيثلا يمكن اعتبار متجه الموضع Position vector هو المتجــه اللو اصــل مــن مركز إسناد ميين إلى مكان الجسم الأي يراد تحديده. كما في الثكل 2.1 حيث تم اعثبار x, y مركز الإسناد فی بعدين فقط هو مركز المحاور

Figure 2.1

في الشكل 2.1 متجه الموضع 1 يحدد موضع الجسم عند بداية الحركة ومتجه الموضــع r_{2} تعطى بالمعادلة (2.3)

$$
\begin{align*}
& \vec{r}_{1}=x_{1} i+y_{2} j \tag{2.1}\\
& \vec{r}_{2}=x_{2} i+y_{2} j \tag{2.2}\\
& \Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} \tag{2.3}
\end{align*}
$$

Δr is called the displacement vector which represent the change in the position vector

لاحظ أن الإزاحة $\Delta \vec{r}$ displacement تعتمد على المسافة بين نقطتي البدايــة و النهايـــة فقط ولا تعتمد على المسار الذي يسلكه الجسم.

Example 2.1

Write the position vector for a particle in the rectangular coordinate (x, $y, z)$ for the points $(5,-6,0),(5,-4)$, and $(-1,3,6)$.

Solution

For the point $(5,-6,0)$ the position vector is $r=5 i-6 j \rightarrow$
For the point $(5,-4)$ the position vector is $r=5 i-4 j \rightarrow$
For the point $(-1,3,6)$ the position vector is $r=-i+3 j+6 k$

2.2 The average velocity and Instantaneous velocity

عند انتقال الجسم من موضع البداية عند الزمن t_{1} إلى موضـع النهاية t_{2} فإن حاصل قسمة الإز احة على فرق الزمن $t \Delta$ Velocity 1 ($t_{2}-t_{2}$ يعرف باللسر عيث أن الجسم يقطع Average المسافة بسر عات مختلفة فإن السر عة المحسوبة تســمى بمتوســط اللـــرعة Instantaneous ويمكن تعريف السر عة عند أية لحظة بالسر عة اللحظية .velocity .velocity

The average velocity of a particle is defined as the ratio of the displacement to the time interval.

$$
\begin{equation*}
\vec{v}_{\text {ave }}=\frac{\Delta \vec{r}}{\Delta t} \tag{2.4}
\end{equation*}
$$

The instantaneous velocity of a particle is defined as the limit of the average velocity as the time interval approaches zero.

$$
\begin{gather*}
\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t} \tag{2.5}\\
\therefore \vec{v}=\frac{d \vec{r}}{d t} \tag{2.6}
\end{gather*}
$$

The unit of the velocity is $(\mathrm{m} / \mathrm{s})$

عند انتقال الجسم من موضع البداية عند الزمن t_{1} إلى موضع اللنهاية t_{2} بسر عة ابتدائية و عند النهاية كانت السرعة ${ }_{2}$ فإن معدل تغير السر عة بالنسبة إلى الزمن يعــرن باســــ التسار ع Acceleration أو متو ســط التـــــار ع Average Acceleration، ويكــون التسار ع اللحظي Instantaneous acceleration هو السرعة اللحظية على الزمن.

The average acceleration of a particle is defined as the ratio of the change in the instantaneous velocity to the time interval.

$$
\begin{equation*}
\vec{a}=\frac{\Delta \vec{v}}{\Delta t} \tag{2.7}
\end{equation*}
$$

The instantaneous acceleration is defined as the limiting value of the ratio of the average velocity to the time interval as the time approaches zero.

$$
\begin{equation*}
\vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t} \tag{2.8}
\end{equation*}
$$

The unit of the acceleration is $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
لنفترض طائرة تبدأ الحركة من السكون أي $\mathrm{V}_{\mathrm{o}}=0$ عند زمن $t_{0}=0$ كما في الثككل أدنـــاه.
وبعد فتزة زمنية قدر ها 29s تصل الطائرة إلى سرعة 260k/h فإن العجلــة المتو ســطة
للطائرة هي $9 \mathrm{~km} / \mathrm{h} / \mathrm{l}$

يوضدح الثكل أعلاه تأثنير العجلة على زيادة سرعة الطائرة للأربع ثوان الأولى من انطلاڤها حيث تكون السر عة بعد زمن قدره ثانية يساوي 9km/h وبعد زمن ثانيتين تصل
 السر عة إلى 18km/h و هكذا

Example 2.4

The coordinate of a particle moving along the x -axis depends on time according to the expression
$x=5 t^{2}-2 t^{3}$
where x is in meters and t is in seconds.

1. Find the velocity and acceleration of the particle as a function of time.
2. Find the displacement during the first 2 seconds.

3 . Find the velocity and acceleration of the particle after 2 seconds

Solution

(a) The velocity and acceleration can be obtained as follow

$$
\begin{aligned}
& v=\frac{d x}{d t}=10 t-6 t^{2} \\
& a-\frac{d v}{d t}-10-12 t
\end{aligned}
$$

(b) using the equation $x=5 t^{2}-2 t^{3}$ substitute for $t=2 \mathrm{~s}$

$$
x-4 m
$$

(c) using the result in part (a)

$$
\begin{aligned}
& v=-4 \mathrm{~m} / \mathrm{s} \\
& a=-14 \mathrm{~m} / \mathrm{s}^{-}
\end{aligned}
$$

Example 2.5

A man swims the length of a 50 m pool in 20 s and makes the return trip to the starting position in 22s. Determine his average velocity in (a) the first half of the swim, (b) the second half of the swim, and (c) the round trip.

Solution

(a) $v_{1}=\frac{d}{t_{1}}=\frac{50}{20}=2.5 \mathrm{~m} / \mathrm{s}$
(b) $v_{2}=\frac{d}{t_{2}}=\frac{-50}{20}=-2.27 \mathrm{~m} / \mathrm{s}$
(c) Since the displacement is zero for the round trip, $v_{\text {ave }}=0$

MotionininOne Dimension

2.4 One-dimensional motion with constant acceleration

constant سندرس الآن الحركة في بـد واحد وذلك فقط عندما تكــون العجلـــة ثابتــــة Instantaneous وفــى هــذه الحالـــة تكــون العجلـــة اللحظيــة .acceleration acceleration

$$
\begin{aligned}
& \text { السر عة إما أن نتز ايد أو تتتاقص بمعدلات متساويـة خلال الحركة. } \\
& \text { ويعبر عن ذللك رياضياً على النحو التاللي:- }
\end{aligned}
$$

Instantaneous acceleration $=$ Average acceleration

$$
\begin{equation*}
a=a_{\mathrm{ave}}=\frac{v-v_{\mathrm{o}}}{t-t_{\mathrm{o}}} \tag{2.9}
\end{equation*}
$$

Let $t_{\mathrm{o}}=0$ then the acceleration

$$
\begin{equation*}
a=\frac{v-v_{\mathrm{o}}}{t} \tag{2.10}
\end{equation*}
$$

or

$$
\begin{equation*}
v=v_{\mathrm{o}}+a t \tag{2.11}
\end{equation*}
$$

من المعادلة (2.11) يمكن إيجاد السرعة v عند أي زمن t إذا عرفنا السر عة الابتدائية و العجلة الثابتة a التي يتحرك بها الجسم. و إذا كانت العجلة تساو ي صفر ا فإن السرعة لا تعتمد على الزمن، و هذا يعني أن السرعة النهائية تساوي السرعة الابتدائية. لاحظ أيضـاً أن كل حد من حدود المعادلة السابقة له بعد سرعة (m/s).

(8) $\begin{gathered}\Delta L=2.0 \mathrm{~s} \\ \text { sin }\end{gathered}>y=+18 \mathrm{~ms}$

 ثانية.

Since the velocity varies linearly (خطــــي) with time we can express the average velocity as

$$
\begin{equation*}
v_{\mathrm{ave}}=\frac{v+v_{\mathrm{o}}}{2} \tag{2.12}
\end{equation*}
$$

To find the displacement $\Delta x\left(x-x_{0}\right)$ as a function of time

$$
\begin{equation*}
\Delta x=v_{\mathrm{ave}} \Delta t=\left(\frac{v+v_{\mathrm{o}}}{2}\right) t \tag{2.13}
\end{equation*}
$$

or

$$
\begin{equation*}
x=x_{\mathrm{o}}+\frac{1}{2}\left(v+v_{\mathrm{o}}\right) t \tag{2.14}
\end{equation*}
$$

Also we can obtain the following equations

$$
\begin{align*}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2.15}\\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \tag{2.16}
\end{align*}
$$

المعادلة (2.15) نـلاحظ أن المسافة المقطو عة $\left(x-x_{0}\right)$ تساو ي المسافة المقطو عة نتيجة السر عة الابتدائية و هو الحد $v_{0} t$ بالإضافة إلى المسافة نتيجة للعجلة الثابتة، و هذا يظهر في الحد الأخير من المعادلة 1/2at، و إن كل حد من حدود المعادلة له بعد مسافة (m).
 الزمن
$x-x_{\mathrm{o}}=v_{\mathrm{o}} t$
إذا كانت السرعة الابتدائية تساو ي صفر اُ تكون المسافة المقطو عة تساوي
$x-x_{\mathrm{o}}=\frac{1}{2} a t^{2}$

Example 2.8

A body moving with uniform acceleration has a velocity of $12 \mathrm{~cm} / \mathrm{s}$ when its x coordinate is 3 cm . If its x coordinate 2 s later is -5 cm , what is the magnitude of its acceleration?

Solution

$$
\begin{aligned}
& x=x_{\mathrm{o}}+v_{\mathrm{o}} t+\frac{1}{2} a t^{2} \\
& -5=3+12 \times 2+0.5 a(2)^{2} \\
& a=-16 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

2.5 Application of one-dimensional motion with constant acceleration

2.5.1 Free Fall

Free السقوط الحــر constant acceleration من التطبيقات الهامة على العجلة الثابتة تحت تأثير عجلة الجاذبية الأرضية g حيث أن عجلة الجاذبية الأرضية ثابتة نسـياً على ارتفاعات محدودة من سطح الأرض واتجاهها دائما في اتجاه مركز الأرض، وبالتالي يمكن استخدام المعادلات الأربع السابقة مـع تغيير الرمز x بالرمز y وكتلك التعويض عن العجلة a بعجلة الجاذيية الأرضية بإثشارة سالبة g- وذلك لأن عجلة الجاذبة الأرضية دائمـاً في اتجاه مركز الأرض و هذا يعبر عنه من خلا المحور y السالب كما في الشكل 2.2.

$$
\begin{align*}
& v=v_{\mathrm{o}}-g t \tag{2.19}\\
& y=y_{\mathrm{o}}+\frac{1}{2}\left(v+v_{\mathrm{o}}\right) t \tag{2.20}\\
& y=y_{\mathrm{o}}+v_{\mathrm{o}} t-\frac{1}{2} g t^{2} \tag{2.21}\\
& v^{2}=v_{\mathrm{o}}^{2}-2 g\left(y-y_{\mathrm{o}}\right) \tag{2.22}
\end{align*}
$$

Figure 2.2

Example 2.10
A stone is dropped from rest from the top of a building, as shown in Figure 2.4. After 3 s of free fall, what is the displacement y of the stone?

Solution

\square

From equation (2.21)

$$
\begin{aligned}
& y=y_{0}+v_{0} t-\frac{1}{2} g t^{2} \\
& y=0+0-\frac{1}{2}(9.8) \times(3)^{2}=-44.1 \mathrm{~m}
\end{aligned}
$$

Example 2.11

A stone is thrown upwards from the edge of a cliff 18 m high as shown in Figure 2.5. It just misses the cliff on the way down and hits the ground below with a speed of $18.8 \mathrm{~m} / \mathrm{s}$.
(a) With what velocity was it released?
(b) What is its maximum distance from the ground during its flight?

Figure 2.5

Solution

Let $y_{\mathrm{o}}=0$ at the top of the cliff.
 (a) From equation

$$
v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)
$$

$$
\begin{aligned}
& (18.8)^{2}=v_{0}{ }^{2}-2 \times 9.8 \times 18 \\
& v_{0}{ }^{2}=0.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) The maximum height reached by the stone is h

$$
h=\frac{v^{2}}{2 g}=\frac{18}{2 \times 9.8}=18 \mathrm{~m}
$$

